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Numerical solution of the Navier-Stokes equations for 
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Symmetric laminar incompressible flow past a parabolic cylinder is considered 
for all Reynolds numbers. I n  the limit as the Reynolds number based on nose 
radius of curvature goes to zero, the solution for flow past a semi-infinite flat 
plate is obtained. All solutions are found by using an implicit alternating direc- 
tion method to solve the time-dependent Navier-Stokes equations. The solutions 
found are compared with various other exact and approximate solutions. Results 
are presented for skin friction, surface pressure, friction drag and pressure drag. 
The numerical method developed is of particular interest since it combines the 
alternating direction method with the implicit method for solving the boundary- 
layer equations. This leads to fast convergence and may be of use in other 
problems. 

1. Introduction 
Exact numerical solutions to the Navier-Stokes equations are now possible 

using various numerical techniques, and yet some of the simplest flow problems 
of great importance such as flow past parabolas, wedges, flat plates, paraboloids 
and cones have received little attention. In  this paper we present solutions for 
flow past parabolic cylinders and, in the limit of zero Reynolds number, flow past 
the semi-infinite flat plate. Dennis & Walsh (1971) and Botta, Dijkstra & 
Veldman (1971) also considered the parabola problem while van de Vooren & 
Dijkstra (1970) and Yoshizawa (1970) have considered the zero Reynolds 
number case of flow past a semi-infinite flat plate. The present study presents 
additional details of the flow field along with comparisons with other work by 
Van Dyke (1964, 1972) and Davis (1967). The numerical method presented may 
be useful in solving other problems involving the Navier-Stokes equations since 
it combines the numerical technique developed by Blottner & Flugge-Lotz (1963) 
for solving the boundary-layer equations with the implicit alternating direction 
method developed by Douglas (1955). 

Careful attention is focused on extracting singularities from the problem in the 
limit as Reynolds number goes t o  zero, and a set of dependent and independent 
variables are presented which seem ideally suited to the present problem. 

A technique similar to the one presented here is being used by the author to 
solve the problem of laminar incompressible flow past a paraboloid. Similar 
techniques may be possible in the wedge and cone problems. These problems are 

27 FLM 51 



418 R. T .  Davis 

of importance in properly determining the local solutions near leading edges in 
more complicated problems. The singularities which exist in such flows are 
usually ignored by those who study numerical solutions to the Navier-Stokes 
equations. 

2. Governing equations and boundary conditions 
In a previous paper (Davis 1967) the advantages of using parabolic co-ordinates 

in the problem of laminar flow past a semi-infinite flat plate were discussed. It is 
equally advantageous to use the same co-ordinate system for flow past a parabola, 
and the flat plate solution is contained as the limiting solution as the Reynolds 
number based on the nose radius of curvature goes to zero. Since the steady-state 
numerical solution will be determined as the limiting solution to the unsteady 
equations for large time, the governing equations are given including the unsteady 
terms. 

In  non-dimensional parabolic co-ordinates the unsteady Navier-Stokes 
equations are expressed in terms of the stream function and vorticity as 

and 

where the stream function $ is non-dimensionalized by the kinematic viscosity 
v and the vorticity w is non-dimensionalized by the free-stream velocity squared 
divided by the kinematic viscosity, i.e. U2/v. The independent variables 6 and 9 
(parabolic co-ordinates) are non-dimensionalized and related to the dimensional 
x and y Cartesian co-ordinates by 

x+ iy  = v(C+iq)2/2U ( 2 . 3 ~ )  

or x = V('p--T2)/2U, y = v&l/u.  (2 .3b ,  c )  

Finally, the time t is non-dimensionalized by v/  U2.  
The boundary conditions on the problem can be written as 

+(t-,~f5) = 0, a+(g-,Ri)/aq = 0, ( 2 . 4 ~ )  b )  

and k(5,r) 67 as r - f m ,  (2 .5 )  

where R = u a / v ,  (2 .6 )  

a being the nose radius of curvature of the parabola. Note that the body surface 
is located at  7 = R*. 

The following variables are introduced to remove singularities in the numerical 
solution. The Stokes solution with minimum singularity at  the leading edge 
suggests that the vorticity is singular at  the leading edge of the flat p1ate.f- We 

where A 
is an undetermined constant. From this expression the vorticity w is found to be 

and the pressure P ,  non-dimensionalized by pUz, is found to be 2A7/(g2 + q2)  + C .  

t The Stokes solution near the nose of a parabola shows that @ = At(q 

- 2At/( t2  + 7 9  
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also know that the vorticity is an odd function of the co-ordinate 5. In  addition we 
find that far downstream the following form reduces to the proper form for 
vorticity for the Blasius boundary-layer equation. Thus we let 

= - [5/(t2 + r2)1 9(5> 7). (2.7) 

In  a like manner we introduce a new form for the stream function. Making use of 
the condition on the stream function at  infinity (2.5), the Stokes and Oseen 
solutions, the fact that the stream function must be an odd function of < and 
examining the proper form for the stream function far downstream we write 

$ = 5f(<,r)* (2.8) 

With the new dependent variables given by (2.7) and (2.8) the governing 
equations (2.1) and (2.2) become 

and f77  - g +fg + (2lf;)fk = 0, (2.10) 

with boundary conditions 
f(& R 4  = 0, f& R 4  = 0, ( 2 . 1 1 ~ ~  b )  

f(<7r) 7, d L r )  07 as r - ta .  (2.12a,b) 

In addition symmetry conditions must be applied on f and g at  5 = 0. 
It should be noted that these equations reduce to the form used by Davis (1967) 

for obtaining locally similar solutions when the terms with t and t derivatives are 
neglected. It should also be noted that the equations are parabolic in < when the 
last two terms in both (2.9) and (2.10) are neglected. This fact will be exploited in 
the numerical solution. In  fact neglecting these terms results in equations which 
contain both the first-order boundary-layer terms and the terms for the second- 
order curvature corrections. The numerical scheme to be used will take advantage 
of this and results in a solution technique which will converge rapidly, especially 
at high Reynolds numbers. 

In  order to evaluate the pressure on the parabola or flat plate surface, it is 
necessary to find an expression for the pressure in terms of vorticity. This is done 
by writing the <momentum equation in parabolic co-ordinates and evaluating the 
resulting equation on the body surface. This results in 

(2.13) 

where P is defined to be the dimensional pressure minus the free-stream pressure 
non-dimensionalized by pU2. The value of P as 5+a1 can be shown to be zero. 
Thus using the pressure at  downstream infinity as a boundary condition, the 
surface pressure can be found by integrating from downstream infinity back 
along the surface. There are certain difficulties in evaluating the pressure and the 
drag integrals which follow. These difficulties will be discussed in $5. 
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The friction and pressure drags are given by 

(2.14) 

D, = 2 P, sin 0 ds, (2.15) and 

where 0 is the parabola surface slope, s is the arc length along the parabola, and 
r, and P,; are the dimensional surface shear and pressure respectively. 

Non-dimensionalizing (2.14) and (2.15) and substituting the relations for the 
parabolic co-ordinate transformations, we obtain 

1:: 

and 

Finally an expression for the skin friction coefficient can be written as 

(2.16) 

(2.17) 

(2.18) 

3. Previous approaches to the flat plate and parabola problem 
We will not discuss in detail the various asymptotic results which were dis- 

cussed previously by Davis (1967) for the flat plate problem but will point out new 
results which have been discovered since then. 

Van de Vooren & Dijkstra (1970) presented a numerical solution to the flat 
plate problem. They were quite careful in handling the boundary conditions a t  
infinity for both the [ and 7 directions. They did this by introducing independent 
variables which transformed the problem in the quarter infinite region to one in a 
finite region. We believe their solution to be quite accurate and to model correctly 
the flat plate problem. Later we will show that our flat plate results are in close 
agreement with those of van de Vooren & Dijkstra. 

Yoshizawa (1970) also solved the flat plate problem in a manner somewhat 
similar to that used by van de Vooren & Dijkstra (1970). Some questions might 
arise as to the inaccuracy in imposing the free-stream and downstream con- 
ditions a t  rather small values of [ and 7. Since the stream function approaches its 
free-stream and downstream conditions with terms which die out algebraically 
(the higher-order boundary-layer results of Imai (1957), for example, indicate 
this), one should go to a quite large value of [ and 7 (infinite preferably) before 
imposing the outer boundary conditions. Approaches which do not do this lead 
to errors in the solution which are difficult to assess. Apart from this, Yoshizawa’s 
solution appears to be quite satisfactory and agrees closely with the results of 
van de Vooren & Dijkstra (1970) for leading edge skin friction. 

Dennis & Walsh (1971) have computed flows past parabolas a t  various Rey- 
nolds numbers. The method they used is similar to one discussed by Dennis & 
Chang (1969). Van Dyke (1972) has used the solutions of van de Vooren & 
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Dijkstra (1970) and Yoshizawa (1970) for the flat plate to obtain the low Reynolds 
number solution for flow past a parabola. He then used his second-order boundary 
layer solution (Van Dyke 1964) to combine with the low Reynolds number 
solution to form a rational fraction for leading edge skin friction which agrees well 
with the results of Dennis & Walsh (1971) for all Reynolds numbers. Botta et al. 
(1971) have also made calculations for the parabola which agree with Dennis & 
Walsh (1971) and Van Dyke (1972). 

Alt’hough van de Vooren & Dijkstra (1970) have shown, using their numerical 
results, that there is about a 5 yo error near the leading edge in skin friction in the 
results of Davis ( 1967) and Dean (1 954) it is felt that the results of Dean and Davis 
are quite acceptable, especially since there has been considerable controversy 
over whether the skin friction is zero, finite, or singular at the leading edge of a 
flat plate. 

In  this paper we will attempt to determine where the 5 yo error occurs in the 
method of Davis (1967). Dijkstra (1969) has pointed out that Dean’s (1954) 
method does not produce exponential decay of vorticity for large 7. On the other 
hand it can be shown that in Davis’s (1967) solution vorticity dies out exponen- 
tially, but the stream function can also be shown to die out exponentially to its 
free-stream condition. It is known that the stream function should die out 
algebraically. The fact that the stream function dies out exponentially in Davis’s 
results can be seen from equation (2.10). The last two terms drop out in the first 
truncation. Thus if g dies out exponentially, so does f?,. Applying the boundary 
condition a t  infinity ( 2 . 1 2 ~ )  shows that f does not have the proper behaviour. 
Higher truncations do not remedy the situation. Thus to handle the flow field 
properly far from the body the complete stream function equation should be used. 

Finally, it should be pointed out that the presentation of the results of Davis 
(1967) in figure 1 of the paper by van de Vooren & Dijkstra (1970) is in error. The 
values plotted in the range above a Reynolds number of five are too high. This is 
obvious since in figure 2 van de Vooren & Dijkstra show an integrated skin 
friction by Davis which is below their value. This is impossible if their local skin 
friction is always lower than the values given by Davis as shown in figure 1. A 
correct plot would show values of local skin friction by Davis which drop slightly 
below van de Vooren & Dijkstra’s values above Reynolds numbers of about five. 
This error probably occurs because of difficulty in picking skin friction values off 
the curves given by Davis (1967). 

4. Numerical method of solution 
The numerical method of solution of (2.9) and (2.10) will be similar to the 

alternating direction implicit method developed by Douglas ( 1955) for solving 
linear parabolic equations in two space variables. I n  solving non-linear parabolic 
equations, there is some choice in how the convective terms are t o  be handled and 
it is felt that the procedure to be employed here is novel in that respect. The 
method to be described may be useful in solving other problems involving the 
Navier-Stokes equations. 

Equations (2.9) and (2.10) have been deliberately written in a form such that 



422 R. T. Davis 

locally similar solutions can be obtained directly by ignoring the ( derivatives. 
We also note that if we exclude the last two terms in (2.9) and (2.10), i.e the terms 
ftt + 2ft/( and gt, + 2g,/t, we obtain equations which include the second-order 
boundary-layer equations for flow over a parabola, which are formally valid to 
second order in the inverse square root of the Reynolds number for large Rey- 
nolds numbers. Making this approximation, we ignore the second-order effect 
of flow due to displacement thickness which can be incorporated by leaving in 
the last two terms in (2.10), i.e. ftr+ 2ft/(. We thus develop our difference scheme 
so that we are integrating boundary-layer-like equations a t  one half time step 
and correcting for displacement effects (ft, + 2f,/() and the elliptic terms in the 
vorticity equation (gs, + 2g,/() a t  the next half time step. This is done by writing 
(2.9) and (2.10) as follows. Note that a fictitious time derivative has been added 
to the stream function equation in order to employ the alternating direction 
method. We have also deleted the ([2+72) coefficient from the g, term in (2.9) 
since this seemed to lead to faster convergence. If we were interested in unsteady 
solutions and not just the steady-state solution, this term would have to be 
retained. In  the first half time step the equations are written as 

(9" - g i ) w  = g,*, + [f* + tf; - 471(62 + 72)ig; 

+[(~2-r2)fiT-27(f*+~f~)19*/((2+r2) 

(f* -fj)/w = f; - g* + [fg + 2f&Jj, 

-[&f:+4t/(~2+r2)19;+ [9[.+29&1j (4.1) 

and 

where Aw is a fictitious time step increment. The starred (*) variables are evaluated 
a t  the unknown new half time step and the quantities with subscripts j are 
evaluated a t  the previous half time step. At the next half time step the time 
derivatives are written as (gj+l - g*)/&At and ( fjil - f *)/JAW and now the starred 
variables become known quantities and the quantities on the right-hand side of 
(4.1) and (4.2) with subscriptsj becomejf 1 and thus become the unknowns. 

The equations have been written in this particular form since the starred 
variables contain the boundary-layer equations. At the time step where the 
starred variables are the unknowns, the equations in the spatial co-ordinates are 
integrated as boundary-layer equations using an implicit finite-difference 
method similar to the one developed by Blottner & Flugge-Lotz (1963). All 7 
derivatives in the starred variables are written as three-point central differences 
and the 6 derivatives in the starred variables are written as two-point backward 
differences. The spatial solution in starred variables is started a t  the stagnation 
point or leading edge of the parabola where the equations in starred variables 
reduce to ordinary differential equations in 7. The stagnation-point or leading- 
edge solution is then found through iteration by first putting in guessed values 
for the non-linear coefficients and then iterating until the solution converges. A 
good initial guess on the coefficients is the solution from the previous time step. 
This procedure is repeated at each downstream station along the parabola 
surface. The method described for this half time step is a rather standard proce- 
dure for solving the boundary-layer equation and has been employed by numerous 
authors. 

(4.2) 
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At the next half time step the starred variables become known quantities and 
the unstarred ones unknown. The ( derivatives in the last two terms of (4.1) and 
(4.2) are replaced by three-point central differences, and the solution is obtained 
as before except now we are dealing with a linear problem and no iteration is 
required. 

Some mention should be made of special problems which arise in the solution. 
In  both half time steps simultaneous equations of triadiagonal form are en- 
countered which are easily solved by using the Thomas (1949) algorithm. In 
order to use this method, the boundary conditions must be put in a suitable form. 

For solving in the starred variables the vorticity equation (4.1) is uncoupled 
from the stream function equation (4.2) if the values from the previous iteration 
at a particular station are used for thef* terms appearing in the coefficients. The 
vorticity equation (4.1) in starred variables can then be solved at  a particular 
station if a value of g*(E, Rg) is guessed. This is necessary since only g*(E, co) is 
given as a boundary condition (see (2.11) and (2.12)). Next the stream function 
equation (4.2) is solved in starred variables. Note that boundary conditions on f * 
are given at both 7 = RB and 7 = 00 by ( 2 . 1 1 ~ )  and (2 .12~) ;  however, in addit- 
ion, the condition (2.11b) must be satisfied on the body surface. This is done 
by repeating the solution, guessing a new value for g * ( t ,  R4) and superimposing 
the previous solution so that condition (2.11 b) is satisfied. This determines 
the correct value of vorticity on the surface. 

At the next half time step, initial conditions are needed at  5 = 0 for the vorticity 
and stream function equations. These are obtained by evaluating both (4.1) and 
(4.2) at f l  = 0. To do this, we need the limiting values offs/E and gs/E as E+ 0;  these 
are given by fst and gst. Combining these terms with the ftt and gtt terms already 
appearing, writing these terms as three-point central differences, and making 
use of the symmetry of the f and 9 functions with respect to = 0, we obtain a 
boundary condition at  fl  = 0 for both the vorticity and stream function equations. 
The solution for flow past a parabola is known to approach the flat plate Blasius 
solution as E-too. This boundary condition is applied at downstream infinity. 

The outer boundary conditions present a problem since they must be pre- 
scribed at infinity. In  the numerical solutions, vorticity is found to die out 
exponentially with 7 as it should; however, the stream function is found to die out 
algebraically. Thus, to ensure numerical accuracy, we impose the boundary 
condition on stream function at  infinity whereas it is not so important to impose 
the vorticity condition at infinity. To do this we must transform the infinite 7 
region to a finite region. Van de Vooren & Dijkstra (1970) investigated the proper 
form for the transformation and proposed a new normal co-ordinate variable. 
We have also looked at  this problem and find that if we let 

(4.3) 

we can get an accurate solution with fewer points than was possible from the 
transformation used by van de Vooren & Dijkstra (1970). In  our new variables 
N goes from zero to one whereas 7 goes from zero to infinity. The value 5 appears 
in the numerator since this gives a value of 7 = 5 + R* when N = 0.5. The vorticity 
is found to go to zero at  about N = 0.5 for all Reynolds numbers and thus half 
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the grid covers the viscous region and the other half the region which is outside 
this viscous region. The expression (4.3) can be shown to handle singularities as 
7+00 properly, see van de Vooren & Dijkstra (1970). 

Van de Vooren & Dijkstra (1970) have also examined transformations in the 5 
variable which will have the proper behaviour as [+co and transform the infinite 
5 region into a finite region. These transformations have the form 

s = 1 - l o g  (1 +$)/$I, (4.4) 

where van de Vooren & Dijkstra chose A to be 2 for the flat plate case. Note that s 
(which is not the arc length along the parabola) runs from 0 at [ = 0 to 1 a t  5 = 00. 

Prom the numerical solutions we have determined A such that s equals 0.5 when 
the skin friction function g(c7 R:) is approximately half way between its value at  
the stagnation point and [ = co. A relation which does this approximately is 

A = 4+0*4R$. (4.5) 

With the transformation of the independent variables given by (4.3) and (4.4), 
the governing equations (2.9) and (2.10) are now confined to a finite region 
extending from s and N = 0 to 1. The calculations were performed with different 
combinations of step sizes; however, the final results are for 125 steps in the N 
direction and 40 steps in the s direction. Little difference was found between these 
results and those obtained using 20 steps in the s direction. Tests of step sizes in 
the normal direction showed that 125 steps were sufficient for three-place 
accuracy. 

We note from (2.12a) that the function f+colikeq asy-tco. Thiswashandled 
in the numerical calculations by defining a new function h, 

h = f - ’Y.  (4.6) 

We know that the displacement effects are such that h goes to infinity like a 
constant term plus terms which die out algebraically. To treat this properly we 
prescribe the boundary condition 

h,(t7co) = 0. (4.7) 

If we wanted a true unsteady solution, it would be necessary to relax the stream 
function equation (4.2) a t  each time step At by marching in Av until a steady-state 
solution with respect to v were obtained; however, since we are only interested in 
the final steady-state solution to the problem, the solutions to the two equations 
were found by marching simultaneously with steps in At and Av. Experimentally, 
approximate optimal time steps of At and Av of ten were found for the case of 
Reynolds number of ten and the same At and Av step sizes were used for all other 
cases. The rate of convergence depended on ReynoIds number with faster 
convergence being obtained at  high Reynolds numbers, as should be obvious 
from the way the numerical solution is formulated. Solutions started a t  t and 
v = 0 were obtained by ignoring the time and last two 5 spatial terms in the 
transformed form of (2.9) and (2.10). This set of parabolic partial differential 
equations was then integrated from 5 = 0 to  co in exactly the same manner as in 
the star step of the alternating direction method described previously. The 
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solution of this set of equations a t  infinity, which is the flat plate solution, was 
then used as a downstream boundary condition and the other solution points 
were used as an initial solution. This is an accurate initial solution and is exact in 
the limit as Reynolds number goes to infinity. The numbers obtained from the 
starting solution are quite close to  the locally similar solution obtained by Davis 
(1967), the difference being that the parabolic 5 derivative term in (2.9) is 
neglected in the locally similar solutions. 

Convergence to three-place accuracy is obtained typically in ten to  twenty time 
steps resulting in a computing time on the IBM 360-50-65 computer of about ten 
minutes per value of Reynolds number in the case where 125 steps are taken in 
the normal N direction and 20 steps are taken in tangential s direction. Computing 
time was approximately twice as long for the cases where 40 steps were taken in 
the s direction. All calculations were done in double precision arithmetic. 

5. Calculation of surface pressure and drag coefficients 
As mentioned in $2, the Stokes solution indicates that the pressure is singular 

a t  the leading edge of a flat plate. The expression for the pressure near the nose of 
a parabola from the Stokes solution is 

p = [2-4/(52 + r2)1 + c, (5.1) 

where A and C are undetermined constants. It was also mentioned in $ 2 that the 
Stokes solution for vorticity gives 

w = - 2A(/(5'++'). (5.2) 

2A = g(O,R3) .  (5.3) 

Comparing (5.2) with (2.7), we see that a t  low Reynold; numbers 

Thus to remove the singularity from the pressure expression we let 

Substituting into expression (2.13) we obtain 

(5 .5)  

where go = sto, w. (5 .6 )  

The function ' is properly behaved near 6 = 0. Numerical solutions obtained 
before this singularity was removed showed a large variation in pressure gradient 
aP/aE near the stagnation point a t  low Reynolds numbers. It should also be noted 
that this transformation (5.4) encounters no difficulties as 5 goes to infinity or as 
Reynolds number goes to infinity. 

We can now write down an expression for the pressure drag coefficient (2.17). 
With the new variables, this becomes 
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For convenience, so that we will have a pressure drag coefficient which is finite 
at  zero and infinite Reynolds numbers, we subtract the pressure drag contribution 
at  infinite Reynolds number from (5.7) and divide the resulting expression by R4. 

The surface pressure distribution on the parabola as Reynolds number goes to 
infinity is given from inviscid theory as follows: 

Pi = &R/(R+t2). (5.8) 

The Reynolds number appears because the way we have non-dimensionalized is 
not appropriate for high Reynolds numbers. Thus subtracting out the drag a t  
infinite Reynolds number and dividing by R4 to obtain a finite limit as Reynolds 
number goes to zero or infinity, we obtain 

g(0, R*) tan-l ((R-4) + [P(& R4) - P,((,  Ri)] 

which results in - 
CDp = C,, R-4 - R* tan-l ((R-4). (5.10) 

As (goes to infinity, (2.16) will result in a value of infinity for CDf for finite values 
of Reynolds number. We avoid this by removing the infinite part of the integral. 
This is done by defining 

(5.11) 

where g(o0, R4) can be shown to have the flat plate value of 0.4696. Comparing 
(5.11) with (2.17), we see that 

CDf = CDf - 2g(m, R4) [c- R4 tan-1 (tR-*)]. (5.12) 

One can show from the results of Imai (1957) that GDf should approach a value of 
2.326 as 5 goes to infinity for the flat plate case. It would be more appropriate in 
(5.11) to subtract out the contribution to drag on the parabola at infinite Rey- 
nolds number. However since that solution can only be obtained numerically it 
will not be done. As a result CDf will go to infinity like R* as Reynolds number goes 
to infinity. 

With these expressions, the required integrations can be performed. In  all cases, 
the trapezoidal rule is used; Simpson’s rule was also used and showed insignificant 
difference in the results. Equation (5 .5 )  is integrated by starting at  6 =co and 
integrating back along the parabola surface to the leading edge. The remaining 
two integrals (5.9) and (5.11) are obtained by integrating from the leading edge to 
downstream infinity. 

6. Results and conclusions 
Figures 1 and 2 and table 1 give results for leading edge skin friction and 

pressure (see (2.18) and (5.4)) using the numerical method described in $4. Step 
sizes and convergence criteria were checked for a number of cases and it is felt 
that the quantities g(0, R4) and P(0,  Rt) are probably accurate to three places. 
The same cannot be said for the friction and pressure drag coefficients CDf (00, R4) 
and Q,,(.O, R&) given in table 1 and figures 5 and 6. We found that these quanti- 
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ties were much more sensitive to step sizes and convergence criteria. This is 
because of the way they are defined. The expression (5.9) for CDp is defined with 
the drag due to inviscid surface pressure subtracted out. Thus, cDp is calculated, 
especially at  high Reynolds numbers, from numbers which are in the fourth, fifth 
or even sixth significant figure of P ( [ ,  RJ). The same is generally true of cDf 
although not to the same extent as cDp, since only the flat plate value of g is 
subtracted out in (5.11). Thus, except for the flat plate case, the results of cDf 
contain part of the first-order boundary-layer solution, which makes this result 
converge faster, even though it is not as useful as the result for cDp. 

1.2 . 

1.0 ’ 

g tn ^ ^  / -Present A 0 Dennis Local similarity & results Walsh (1971) ~ 

----Van Dyke (1971) 
g / ’  -.-. Second-order boundary _.” layer Van Dyke (1964) 

0.6 -wee 
R = 0 limit (calculated) 

(Stokes flow) 

0.4 1 I I I I I 
0.1 1 10 100 1000 10000 

R = Ualv 

FIGURE 1. Skin friction at the leading edge of a parabolio cylinder. 

/- - Present results 

0.5- 1.233 R-* 
(equation (5.4) 

R= 0 limit (calculated) 

I 1 10 100 1000 10 000 

R = Ua/v 

FIGURE 2. Pressure at the leading edge of a parabolic cylinder. 
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From the numerical results, we can find several limiting solutions. First, from 
(5.2) we find that the value of 2A, which equals g(0, Rg) a t  low Reynolds numbers, 
can be evaluated from the flat plate solution to  give 

w = - 0.5336/(g2 + T ~ )  (6.1) 

near the leading edge of a parabola at low Reynolds number. From (5.4) and the 
numerical results, we can find an expression for pressure a t  low Reynolds number 
near the leading edge. This results in 

P = [0 .533~/ ( [~+7~)]+0*121.  (6.2) 

The numbers found from the numerical solutions to form these expressions are in 
excellent agreement with van de Vooren C% Dijkstra (1970) and only slightly 
different from the results of Yoshizawa (1970) in the cases where they can be 
compared. 

R 

0 
0.1 
0.3 
1 
3 

10 
30 

100 
300 

1000 
3000 

10000 

do, RS) 
0.533 
0.563 
0.586 
0.629 
0.694 
0.793 
0.899 
1.009 
1.089 
1.150 
1.186 
1.209 

P(0,  Rlz) 

0.121 
0.165 
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0.479 
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Cdco, RB) 
I+R8 

2.41 1 
2.475 
2.499 
2.516 
2.523 
2.507 
2.483 
2.451 
2.427 
2.409 
2.401 
2.399 

GJdm, R 4  

2.770 
2.805 
2.829 
2.846 
2.882 
2.931 
2.938 
2.902 
2.839 
2.735 
2.661 
2.635 

TABLE 1. Leading edge and drag integral results 

From the expressions (5.7) and (5.9) and the numerical results, a low Reynolds 
number pressure drag coefficient can be found. The first term in (5 .7 )  acts as a 
concentrated force at the leading edge even though its magnitude is only Ra. 
This can easily be evaluated and results in a value of ;rrg(O, Rg) Rg = 1.674Ri. 
The remainder of the pressure drag comes from the drag on the body from the 
leading edge to downstream infinity. This is the second term in (5.7) and results 
in a calculated value of 1.096Rg. Thus, the pressure drag coefficient a t  low 
Reynolds number is 

C D p ( ~ ,  Ra) = (1.674 + 1-096) Ra = 2-770R4. (6.3) 

We note that about 60 yo of the pressure drag is concentrated a t  the leading edge. 
At high Reynolds numbers, figure 6 indicates a limiting value of about 2.6 for 

G,,(CO, Rt). Using (5.10), we find that at  high Reynolds numbers 

C D I , ( ~ ,  RB) 5 1.57R -+ 2-6Rh. (6.4) 

The second term is the second-order boundary-layer contribution which could be 
checked with a second-order boundary-layer calculation, if one were available. 
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For purposes of comparison, it would be useful for complete second-order 
boundary-layer calculations to be made. 

We notice from figure 6 that the coefficient of the second term in (6.4) only 
varies from about 2.9 to 2.6 for the whole Reynolds number range. Thus, we can 
write an expression 

which is approximately valid for all Reynolds numbers. In  the Reynolds number 
range near zero Reynolds number where the second term in (6.5) is important, 
2.8 is a good value for the coefficient. Above a Reynolds number of ten the second 
term in (6.5) becomes less important. 

A t  zero Reynolds number (the flat plate case) the value of E,,(m, R*) obtained 
from (5.12) should be 2.33, which is an exact value obtained from momentum 
considerations by Imai (1957).t The value obtained here is 2.41 from taking 
40 steps in the 6 direction. The value obtained from taking 20 steps in the 6 
direction is 2.58 and thus it appears that more steps in the 6 direction would bring 
the results closer to Irnai's value. 

Since there is some of the first-order contribution at high Reynolds number in 
the G,,(cn, Rt) expression (5.11), this function will go to infinity like R* for high 
Reynolds numbers. Thus in figure 5 we plot the results by dividing by 1 + Rg, 
which removes most of the variation with Reynolds number. The result is not as 
useful as the pressure drag result since it does not give the second-order boundary- 
layer friction drag result directly as Reynolds number goes to infinity. 

Van Dyke (1972) has used his (Van Dyke 1964) second-order boundary-layer 
results along with the flat plate results of van de Vooren & Dijkstra (1970) and 
Yoshizawa (1970) to form a rational fraction for skin friction which approaches 
the proper limits for skin friction for high and low Reynolds numbers. The 

C D p ( ~ ,  Rt) = l.6R + 2*8R&, (6.5) 

- -  

expression which results is 
1.233 + 2.308-9 

g ( O , W  = 1 + 4-3222-8 * 

Figure 1 shows a comparison of (6.6) with the results obtained here. The results 
compare well, especially at  high Reynolds numbers. The results of Dennis & 
Walsh (1971) and the local similarity results (see Davis 1967) are presented for 
comparison. The results of Botta et al. (1971) are not shown since they plot pre- 
cisely on the curve of the present results. The present results should compare 
better with Van Dyke (1972) at high Reynolds numbers than at  low Reynolds 
numbers since his high Reynolds number expansion is valid to second order, 
whereas his low Reynolds number expansion is only valid to  first order. Table 2 
gives a comparison of the results obtained here with those of Dennis & Walsh 
(1971) and Botta et al. (1971). We note that there is almost perfect agreement 
between the present results and those of Botta et al. (1971) and Dennis & Walsh 
(1971). 

We can form a similar expression for P(0,RA). There is no second-order 

7 D. Dijkstra has pointed out to the author in a private communication that Imai's 
analysis can be extended to the parabola case t o  give 

- 
Cor(w, RB)+C,,(CQ, Re)) = +7~(1.21678+R*)~. 

The present results are in good agreement with this. 
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boundary-layer contribution to pressure a t  the stagnation point so (5.1) gives 
for high Reynolds numbers 

P(0,  RB) = 0.50 - 1.233R-6. (6.7) 

H(0, Rg) = 0.121. (6.8) 

The low Reynolds number leading edge result is 
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TABLE 2. Comparison with other results 
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FIGURE 3. Skin friction distribution on a parabolic cylinder. 0 ,  parabolic approximation. 

Combining (6.7) and (6.8) to form a rational fraction as was done by Van Dyke 
(1971) for skin friction gives 

I 

0.5 + 0.393R-4 
1.0 + 3.2522-4 

P(0,  Ri)  = 

Figure 2 shows the same kind of agreement between the rational fraction (6.9) 
and numerical results for pressure as was found in figure 1 for skin friction. 

Figures 3 and 4 show distributions of skin friction and pressure over parabolas 
at various Reynolds numbers. The results labelled ‘parabolic approximation ’ are 
obtained by making the governing equations parabolic in 6. This is done by 
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neglecting the time derivative in (2.9) and also the last two terms in (2.9) and 
(2. lo), i.e. grr + 2gr/t and frt + 2f6/c. These results are identical to the local simi- 
larity results of Davis (1967) at the leading edge and are only slightly different 
downstream. The difference is due to the inclusion of the parabolic term in 6 in 
(2.9) in the present results. This term becomes more important at  high Reynolds 
numbers since then the approximation equations including this term reduce to 
the boundary-layer equations. Comparisons with the more exact numerical 
solutions to the full Navier-Stokes equations show good agreement downstream 
for all Reynolds numbers. The agreement is poorest at  intermediate Reynolds 
numbers as indicated in figure 3. The ‘parabolic approximation’ is the solution 
that is used as the initial solution for the full time-dependent Navier-Stokes 
solution. The fact that it is quite close to the exact solution for all Reynolds 
numbers is one of the reasons the time-dependent method converges rapidly. 
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FIGURE 4. Pressure distribution on a parabolic cylinder. 

Figure 4 shows a comparison with the inviscid pressure distribution given by 
(5.8) for the case of a Reynolds number of 10000. Most of the difference in the two 
results at  the leading edge is due to the first term on the right-hand side of (5.4). 
Since there is no second-order boundary-layer contribution at the leading edge, 
this correction is all that is needed at the leading edge to second order. However, 
since there is a second-order correction in pressure downstream on the parabola, 
an additional correction is needed there, which has not been found until the 
present. It is interesting to note that ignoring the second-order boundary-layer 
correction but including the first term in (5.4) gives good agreement with the 
numerical results for all positions on the parabola. Evidently, the second-order 
boundary-layer correction is quite small. Comparison of skin friction with first- 
order boundary-layer theory shows similar agreement. 
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the full equations. I n  fact, to the scale of all of the plots given in this paper, no 
difference can be detected. Thus, one is led to the conclusion that most of the 
difference between the exact results and the 'parabolic approximation' (which 
gives results close to local similarity) is due to displacement effects, even a t  low 
Reynolds numbers. These results indicate that it is possible to use a set of equa- 
tions simpler than the full Navier-Stokes equations for calculating flow fields 
which will give accurate solutions a t  all Reynolds numbers. Use of a proper co- 
ordinate system in doing this is undoubtedly important. I n  high speed viscous 
flows, approximations of the same type have been made, for example, by Cheng 
(1963), Davis (1970), and Cheng et al. (1970). Approximations of this type which 
make the momentum or vorticity equations parabolic can lead to considerable 
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simplifications in numerical schemes and save large amounts of computing time 
over solutions of the full Navier-Stokes equations. These solutions may in fact 
give results which are accurate to lower values of Reynolds number than an 
order-of-magnitude analysis would suggest, 

In  conclusion, it must be said that, in cases where direct comparisons can be 
made with the classical second-order boundary-layer theory of Van Dyke (1964), 
the results are disappointing. One would hope that second-order boundary-layer 
theory would give good results to Reynolds numbers of at  least 100 for the present 
case. Figure 1, for example, shows that the results diverge at  much higher 
Reynolds numbers. There is always the possibility of a mistake in the results of 
Van Dyke or the results presented here; however, the good agreement between 
the present numerical results and the rational fractional approximation (which 
contains the second-order boundary-layer results) indicates that both results are 
probably correct. The need for further work on finding the complete second-order 
boundary-layer solution for flow over the entire parabola is thus obvious. One 
should be able to determine from this solution which terms are responsible for 
the poor agreement with the Navier-Stokes solutions. 
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